窪田恭史氏による交渉学Web講座

決定分析(9)-効用理論に戻れ(1)-

NPO法人日本交渉協会理事 窪田恭史

前回も述べたように、ライファはカーネマンやトヴェルスキーの主張するプロスペクト理論を否定してはいない。期待効用理論が現実の人間行動を上手く記述できないことも認めており、”Negotiation Analysis”の中でも行動意思決定論の研究成果をしばしば取り上げている。それでもライファは、より良い意思決定を行う手法として期待効用理論は依然として有用であると考えており、1985年に”Back from Prospect Theory to Utility Theory”という論文を著している。交渉分析において、交渉相手の行動や戦略を記述的に説明したり予測したりするには、行動意思決定的分析が優れており、その上で交渉当事者が意思決定の処方を下すための規範を示すのには従来の決定分析が優れていると、それぞれ役割が異なるとライファは考えていた。

“Back from Prospect Theory to Utility Theory”において、ライファはカーネマンとトヴェルスキーによる幾つかの実験を自らの生徒を対象に再現し、その結果と共にプロスペクト理論が指摘する現実の人間による合理性からの逸脱に対する規範を示している。ライファは、そもそも人間が規範的であるなら、より賢明な意思決定を行うために主観的期待効用理論で規範を示す理由はないと述べている。ここでは、同論文を元に、カーネマンらが主張した、損失回避性、共通比率効果、反射効果、そしてディシジョン・ツリーの階層構造について採り上げる。

1.損失回避性

人は目の前に利益については、それが手に入らないリスクの回避を優先し、目の前の損失については、それを回避しようとする傾向がある。この傾向故に、現実の人は期待効用理論の説く効用最大化と合致しない行動を取る。

次の二つの選択肢AとBから一つを選ぶとしたら、どちらを選ぶだろうか?つまり、Aは33%の確率で25万円もらえ、66%の確率で24万円がもらえる。ただし、1%の確率で何ももらえない。一方Bは、確実に24万円が手に入る。

【Q1】

【Q1】


期待効用理論では、AとBの期待値はそれぞれ24.09万円と24万円ということになり、Aを選択するのが合理的ということになる。ところが、実際の実験結果(72名)では実に82%の学生がBを選択したのである。これが損失回避性と呼ばれる現象である。

では、次のQ2はどうか?

【Q2】

【Q2】


今、0円の効用u(0円)=0、25万円の効用u(25万円)=1、24万円の効用u(24万円)=Xとすれば、0≦X≦1の時、

X>33/34なら、A≺BかつC≺D
X<33/34なら、A≻BかつC ≻D
X=33/34なら、A~BかつC~D

となる。A≺Bは「BをAより好む」、 A~Bは「AとBは無差別(差がない)」という意味である。つまり、Q1でAよりBを好むのであれば、Q2でもCではなくDが選択されなければならない。ところが現実の学生は、Q2では83%がCを選択したのである。このように現実の人間は損失回避性ばかりでなく、推移性にも従わない場合がある。つまり、意思決定に一貫性がないのである。

しかし、このQ1とQ2の選択を以下のような例に置き換えて考えてみよう。「24万円」というラベルを貼った赤玉66個と白玉34個の入った壺があるとする。今、このうち白玉33個のラベルを「25万円」に張り替え、残る1個の白玉についてはラベルをはがす(つまり、0円)とする。ラベルを貼りかえる前は、Q1の選択肢Bの状況と同じであり、ラベルを貼りかえた後は選択肢Aと同じ状況である。前者をつぼB、後者をつぼAとすると、つぼAもBも24万円の赤玉66個が入っている状況は同じなので、比較の対象はつぼAには25万円の白玉33個、0円の白玉1個であるのに対して、つぼBは24万円の白玉34個ということになる。読者の皆さんであれば、どちらのつぼを選ぶだろうか?つぼAの方が良いと考えた方も多いのではないだろうか?

【Q1】

【Q1】

【Q2】

【Q2】


Q2も同様である。「24万円」のラベルを貼った白玉34個と「0円」のラベルを貼った赤玉66個が入っているつぼDと、ラベルを貼り替え、「25万円」の白玉33個と「0円」の赤玉66個、そしてラベルをはがした(0円)白玉1個のつぼCとどちらを選ぶだろうか?比較の対象はつぼCが、「25万円」の白玉33個とラベルをはがした(0円)白玉1個、つぼDが「24万円」の白玉34個である。つぼCの方が良いと考えた方も多いのではないだろうか?もし、つぼAとつぼCが望ましいと考えたなら、それは期待効用理論と合致しているのである。

「そんなことはない。自分はもしつぼAを選んで0円の白玉を引いてしまったら、何故確実なつぼBを選ばなかったのだろうときっと後悔するだろう。周りの人からバカだと思われるかもしれない。後悔だけでなく、選ぶ前でも『もし0円の白玉を引いてしまったら』という不安が拭えない」と言う人もいるかもしれない。ライファは問う、「では、その不安を拭い去れるとしたらいくら払うか?」と。仮にその不安は金額にして5千円に相当するとしよう。しかし、つぼAにおいて0円の白玉を引く確率は1/100である。即ち、事後するかもしれない後悔は5千円×0.01、わずか50円に過ぎないのだ。仮に事前の不安が1万円に相当するとしても、やはり事後の後悔は100円に過ぎない。そればかりの損失を恐れて、1万円多く得られる確率が33%もあり、24万円以上得られる確率が99%の選択肢を回避するのは大げさ過ぎるのではないか、というのがライファの主張である。


 

参考:
M. Grauer et al. (eds.) (1985) Plural Rationality and Interactive Decision Processes, p.100-113 “Back from Prospect Theory to Utility Theory”


窪田 恭史氏

ナカノ株式会社 取締役副社長
日本繊維屑輸出組合理事
日本交渉協会燮会幹事
日本筆跡心理学協会、筆跡アドバイザーマスター

早稲田大学政治経済学部卒。
アンダーセンコンサルティング(現アクセンチュア)における
コンサルティングおよび研修講師業務を経て、衣類のリサイクルを85年手がけるナカノ株式会社に入社。
現在、同社取締役副社長。
2012年、交渉アナリスト1級取得。
日本交渉協会燮会幹事として、交渉理論研究を担当。
「交渉分析」という理論分野を日本に紹介、交渉アナリスト・ニュースレターにて連載中。

その他のレクチャー

窪田恭史氏による交渉学Web講座

決定分析(13)-確率判断における認知バイアス-

人の認知は確率判断が苦手である。今回は、確率判断における認知バイアスとして、「連言錯誤」、「基準比率の無視」、「少ないサンプルの予測力の過小評価」を取り上げる。

窪田恭史氏による交渉学Web講座

決定分析(12)-モンティ・ホール問題-

ベイズの定理と直感的な推論がずれることの有名な例に、「モンティ・ホール問題」と呼ばれるパラドックスがある。モンティ・ホールとは、“Let‘s Make a Deal”というアメリカのバラエティ番組の司会者の名前であり、同番組を例にした以下のような問題である。読者は選んだドアを変えるだろうか?それとも、そのままにするだろうか?

窪田恭史氏による交渉学Web講座

決定分析(11)-ベイズの定理-

ある事象Aが起こったという条件のもとでの事象Bの確率(条件付き確率)が成り立つ定理を「ベイズの定理」といい、18世紀の数学者、トーマス・ベイズによって示され、その後、ラプラスによって再発見・発展した。意思決定論とは、ある情報を得て次にどの行動をとるのが最善かを決める理論のことであるが、その決定にベイズの定理を用いた意思決定をベイズ的意思決定という。

窪田恭史氏による交渉学Web講座

決定分析(10)-損失回避性批判(2)-

科学とは「コンセンサスを通じて科学的真実を定義する、本質的に社会的なプロセス」であり、証拠は主観的世界観、あるいは科学者がある時点で受け入れている信念に照らして評価される。クーンはそのような科学を「正常科学」と呼び、「一つまたはそれ以上の過去の科学的成果、ある特定の科学界がさらなる実践の基盤を提供するものとして、一時的に認めている成果に基づいた研究」と定義している。この「成果」をクーンは「パラダイム」と呼び、科学界で採用されるには、その他の科学研究領域からの支持者を引き付けるため、前例がなく、研究者が探求し、パラダイムを構築するための未解決の問題を残していなければならないと主張している。

窪田恭史氏による交渉学Web講座

決定分析(10)-損失回避性批判(1)-

従来の期待効用理論を批判する形で起こった「プロスペクト理論」、およびそれを土台として発展した行動経済学は今や隆盛を極めている。カーネマンが「損失回避の概念は行動経済学に対する心理学の重要な貢献である」と述べているように、行動経済学の中核概念は、利得よりも損失を避けようとする人間の心理傾向、「損失回避性」であるが、この損失回避性については、近年批判も出始めている。

窪田恭史氏による交渉学Web講座

決定分析(9)-効用理論に戻れ(3)-

Q3’、Q4’は、Q3、Q4の利得を損失に変えたものであることが分かる。Q4’の方は損失の期待値がやや低いDを選択した方がわずかに多かったので、これは期待効用理論の観点からも理解できる。問題はQ3’の方である。Aの方が損失の期待値がわずかに大きいが、それにもかかわらず圧倒的多数の92%がAを選んだのである。これはどういうわけであろうか?カーネマンらの説明によれば、人は損失を嫌う、したがって、確実な損失を回避するため、リスクをとる傾向にあるというものである。

窪田恭史氏による交渉学Web講座

決定分析(9)-効用理論に戻れ(2)-

期待効用理論で考えれば、AとB、CとDの確率的利得の比率は、共に16:15である。つまり、選択されるのはAとC、BとDのいずれかであるのが合理的である。そして、期待値はAとCがいずれも高いので、AとCが合理的選択となる。ところが、実験結果はBとCであり、しかもQ3では80%という圧倒的比率でBが選ばれた。考えられるのは、Q3については前回同様、損失回避性により確実な方が選ばれたということ、Q4についてはどちらも当たる確率が低く、両者の確率の差も大きくないので、そうであれば金額の大きい方に賭けてみようというものだ。

窪田恭史氏による交渉学Web講座

決定分析(9)-効用理論に戻れ(1)-

ライファはカーネマンやトヴェルスキーの主張するプロスペクト理論を否定してはいない。期待効用理論が現実の人間行動を上手く記述できないことも認めており、”Negotiation Analysis”の中でも行動意思決定論の研究成果をしばしば取り上げている。それでもライファは、より良い意思決定を行う手法として期待効用理論は依然として有用であると考えており、1985年に”Back from Prospect Theory to Utility Theory”という論文を著している。交渉分析において、交渉相手の行動や戦略を記述的に説明したり予測したりするには、行動意思決定的分析が優れており、その上で交渉当事者が意思決定の処方を下すための規範を示すのには従来の決定分析が優れていると、それぞれ役割が異なるとライファは考えていた。

窪田恭史氏による交渉学Web講座

決定分析(8)-期待効用理論に対する批判-

前回述べたように、期待効用理論は現実の人間の行動を説明するものではないとする批判も多い。その先鞭ともいえるのが、「アレのパラドックス」である。1988年にノーベル賞を受賞した、経済学者のモーリス・アレは、1953年にニューヨークで行われた会議において、以下のような実験を行い、実際の人間が期待効用理論には従わないということを示した。

窪田恭史氏による交渉学Web講座

決定分析(7)-リスク下の意思決定-

経済学者のフランク・ナイトによれば、リスクとは「確率が分かっている不確実性」を言い、確率が分からない真の「不確実性」とは区別する。代替案にリスクがある場合、その代替案がどのような結果となるかは、確率的にしか分からない。起こる結果の価値分析の方法には、「定性的順序」、「貨幣価値」(EMV)、「望ましさの価値」(EDV)、「効用価値」(EUV)の四つがある。

窪田恭史氏による交渉学Web講座

決定分析(6)-等価交換-

ミラーは帰結表を作り直す(表1)。表を眺めると、3つの代替案については通勤時間がほぼ同じであることが分かる。バラノフの通勤時間が等価交換で25分になれば、代替案すべての通勤時間は同じになり、目的から外すことができる(これは期待効用理論における独立性の公理と同じ考え方である)。ミラーは、バラノフの通勤時間の増加分をクライアントへのアクセスの8%の増加で埋め合わせることができると決定する。慎重に検討した結果、彼は交換を行い、通勤時間を無意味にする。

窪田恭史氏による交渉学Web講座

決定分析(5)-等価交換-

意思決定において、すべての目的を同時に達成できればよいが、常にそのようにできるとは限らない。その場合、目的間でトレードオフを行い、いかに妥協をするかを考えなければならない。しかし、トレードオフを行うのは容易ではない。トレードオフを難しくしている要因には、以下のようなものが挙げられる。